

JOURNEY TO MARS

MISSIONS: 6-12 MONTHS
RETURN: HOURS
EARTH RELIANT

MISSIONS: 1-12 MONTHS
RETURN: DAYS
PROVING GROUND

MISSIONS: 2-3 YEARS RETURN: MONTHS

EARTH INDEPENDENT

Human Exploration of Mars Is Hard

Common Capability Needs Identified from Multiple Studies

800-1,100 Days

Total time crew is away from Earth – for orbit missions all in Micro-g and Radiation

Long Surface Stay

500 Days

Surface Operations

Dust Toxicity and Long Range Exploration

44 min

Maximum twoway communication
time delay –
Autonomous Operations

11.2 km/s Earth Entry Speed

Reliable In-Space Transportation

Total continuous transportation power

20-30 t

Ability to land large payloads

20 t Oxygen

produced for ascent to orbit -

Mars is Achievable If We Take the Long View

- Space Launch System
 - Engines
 - Stages (including EUS)
 - Boosters
- Orion Crew Vehicle
- Ground System Development and Operations
- Commercial Crew & Cargo Vehicles
- Asteroid Redirect Mission
 - Capture mechanism
 - Solar electric propulsion
 - Spacecraft bus and solar arrays
- ISS Experiments & Research

HEOMD has more space systems development ongoing today than at any time since Apollo!

What We've Learned Thus Far and Still Need to Learn

Orbital Environment and Operations

Capture, EDL, and Ascent at Mars

Surface Operations at Mars

Learned:

Deep space navigation
Orbit transfer near low-gravity bodies
Gravity assist
Aero-braking
Gravitational potential
Mars's moons' characteristics
ISRU potential

To Learn:

Return flight from Mars to Earth
Autonomous rendezvous and docking
ISRU feasibility
Resource characterization of Mars's
moons
High-power SEP

Learned:

Spatial/temporal temperature variability
Density and composition variability
Storm structure, duration, and intensity
1 mT payload
~10 km accuracy

To Learn:

Ascent from Mars
Large-mass EDL
Precision EDL
Aero-capture
Site topography and roughness
Long-term atmospheric variability

Learned:

Water once flowed and was stable
Global topography: elevation and
boulder distributions
Remnant magnetic field
Dust impacts on solar power/
mechanisms
Radiation dose
Global resource distribution
Relay strategies, operations cadence

To Learn:

Landing site resource survey
Dust effects on human health, suits,
and seals
Rad/ECLSS in Mars environment
Power sufficient for ISRU
Surface navigation

Evolvable Mars Campaign

EMC Goal: Define a pioneering strategy and operational capabilities that can extend and sustain human presence in the solar system including a human journey to explore the Mars system starting in the mid-2030s.

Identify a plan that:

- Expands human presence into the solar system to advance exploration, science, innovation, benefits to humanity, and international collaboration.
- Provides different future scenario options for a range of capability needs to be used as guidelines for near term activities and investments
 - In accordance with key strategic principles
 - Takes advantage of capability advancements
 - Leverages new scientific findings
 - Flexible to policy changes
- Identifies linkages to and leverage current investments in ISS, SLS, Orion, ARM, short-duration habitation, technology development investments, science activities
- Emphasizes prepositioning and reuse/repurposing of systems when it makes sense
 - Use location(s) in cis-lunar space for aggregation and refurbishment of systems

Internal analysis team members:

- ARC, GRC, GSFC, HQ, JPL, JSC, KSC, LaRC and MSFC
- HEOMD, SMD, STMD, OCS and OCT

External inputs from:

International partners, industry, academia, SKG analysis groups

EVOLVABLE MARS CAMPAIGN

A Pioneering Approach to Exploration

EARTH RELIANT

PROVING GROUND

EARTH INDEPENDENT

THE TRADE SPACE

Across the | Solar Electric Propulsion • In-Situ Resource Utilization (ISRU) • Robotic Precursors • Board | Human/Robotic Interactions • Partnership Coordination • Exploration and Science Activities

Trades

- **Cis-lunar** | Deep-space testing and autonomous operations
 - Extensibility to Mars
 - Mars system staging/refurbishment point and trajectory analyses

Trades

- Mars Vicinity | Split versus monolithic habitat
 - Cargo pre-deployment
 - Mars Phobos/Deimos activities
 - Entry descent and landing concepts
 - Transportation technologies/trajectory analyses

Split Mission Concept

EARTH RELIANT

NEAR-TERM OBJECTIVES

DEVELOP AND VALIDATE EXPLORATION CAPABILITIES IN AN IN-SPACE ENVIRONMENT

- Long duration, deep space habitation systems
- Next generation space suit
- Autonomous operations
- Communications with increased delay
- Human and robotic mission operations
- Operations with reduced logistics capability
- Integrated exploration hardware testing

LONG-DURATION HUMAN HEALTH EVALUATION

- Evaluate mitigation techniques for crew health and performance in micro-g space environment
- Acclimation from zero-g to low-g

COMMERCIAL CREW TRANSPORTATION

Acquire routine U.S. crew transportation to LEO

Transition from ISS to Cislunar Space: Framework

Today

Phase 0: Exploration Systems *Testing on ISS*

Ends with testing, research and demos complete*

Asteroid Retrieval Crewed Mission Marks Move from Phase 1 to Phase 2

Phase 1: *Cislunar Flight Testing* of Exploration Systems

Ends with one year crewed Mars-class shakedown cruise

Phase 2: *Cislunar Validation* of Exploration Capability

Mid-2020s

2030

^{*}There are several other considerations for ISS end-of-life

PROVING GROUND OBJECTIVES

Enabling Human Missions to Mars

TRANSPORTATION

WORKING IN SPACE

STAYING HEALTHY

- Heavy Launch
 Capability: beyond
 low-Earth orbit launch
 capabilities for crew, co manifested payloads,
 large cargo
- <u>Crew</u>: transport at least four crew to cislunar space
- In-Space Propulsion: send crew and cargo on Mars-class mission durations and distances

- <u>ISRU</u>: Understand the nature and distribution of volatiles and extraction techniques and decide on their potential use in human exploration architecture.
- Deep-space operations capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations
- <u>Science</u>: enable science community objectives

- Deep-Space
 <u>Habitation</u>: beyond low-Earth orbit habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy
- Crew Health: Validate crew health, performance and mitigation protocols for Mars-class missions

Evolvable Mars Campaign – Strategy Development

Updated Information

JOURNEY TO MARS

Human Mars Missions are challenging. Everything we are doing now focuses on sending the first human pioneers to the Martian system.

TRADE STUDIES

Architectural trade analyses defining capabilities for human Mars missions.

Major Study Questions (A-N) • System Maturation Team Capability information
• Existing Program Data

CAPABILITIES REQUIRED

Earth to space transportation • Habitation • In-space transportation • Destination systems • Technology investment strategies

Destination information

System

COMPLEXITIES AND CHALLENGES

Risk Areas • Programmatic Dependencies

FLIGHT TEST OBJECTIVES

Earth Reliant • Proving Ground • Earth Independent

IMPLEMENTATION STRATEGIES

Mission Sequence • Partnerships

PROGRAMS AND PROJECTS

International Space Station • SLS and Orion • Asteroid Redirect Mission • Habitation

A Brief History of Beyond-LEO Spaceflight Architecture Development

Evolvable Mars Campaign – Study Activity

Body of Previous Architectures, Design Reference Missions, Emerging Studies and New Discoveries

2010 Authorization Act, National Space Policy, NASA Strategic Plan

Evolvable Mars Campaign

- Internal NASA and other Government
- International Partners
- Commercial and Industrial
- Academic
- Technology developments
- Science discoveries

- Establish capacity for people to live and work in space indefinitely
- Expand human presence into the solar system and to the surface of Mars

- An ongoing series of architectural trade analyses, guided by Strategic Principles, to define the capabilities and elements needed for a sustainable human presence on Mars
- Builds off of previous studies and ongoing assessments
- Provides clear linkage of current investments (SLS, Orion, etc.) to future capability needs

	EMC Focus Question	Current Areas of Study	Status		
A	How do we pioneer an extended human presence on Mars that is Earth independent?	 Reusable, long-life, refurbishable and refuelable elements Build-up scenarios for ISRU to reduce logistics chain and increase sustainability 	 Refining habitat and transportation stage concepts Evaluating campaign w/ ISRU fueled inspace transportation system Assessing water-rich Mars architecture impacts 		
В	What are the objectives, engineering, and operational considerations that drive Mars surface landing sites?	perational considerations that			
C	What sequence(s) of missions do we think can meet our goals and constraints?	Campaign concepts that satisfy the strategic principles	 Assessing more minimalist approach and campaign impacts Assessing later dates for crewed Mars orbit missions 		
D	Is a reusable Mars transportation system viable?	 Repurposing of ARV capabilities Reuse of habitat, propulsion stages - 1100 day habitat refurbishment and reusable SEP for multiple missions 	 Assessing refueling, refurbishment, and recertification in cislunar of habitat and SEP Commercial launch of propellants implication on SLS launch rate 		
Ε	Can ARV derived SEP support Mars cargo delivery requirements?	Evolved ARV to transport cargo and optionally crew to Mars vicinity and return safely (41mt roundtrip with crew)	Performing SEP propulsion system refinement and assessing system consistency with evolved ARV capabilities		
F	How can we maximize commonality across Mars ascent, Mars vicinity taxi, exploration vehicle and initial deep-space habitation component?	scent, Mars vicinity on vehicle and initial Trade study of propulsion content (1 Out) Trade study of propulsion content (1 Out)			
G	What are the required capability investments for the EMC over the next five years?	 Capability development prior to sending crew to Mars vicinity Capabilities and FTOs for ISS testing Capabilities and FTOs for cislunar testing 	 Defining Proving Ground satisfaction criteria Refining SMT capability roadmaps Quantifying development efforts and required ISS and cislunar testing 15 		

al cislunar habitation international, internal) ation functional requirements botic tasks as a
functional requirements
y apability beyond what
assessments and concepts lar power for Mars mission to Mars vs
and lander integration em in cislunar the hab propulsion ggregation ormancy needs
cture elements (SEP nd station keeping ment strategy
ISS mission g duration Mars analog
er sizing concepts infigurations; crews with ols vs methane; cent issues; impacts to

NextSTEP Habitation Studies

NASA awarded four Phase 1 industry-led studies to develop concepts for a cis-lunar habitat.

 Lockheed Martin: Habitat to augment Orion's capabilities. Design will draw strongly on LM and partner Thales Alenia's heritage designs in habitation and propulsion.

 Bigelow Aerospace: The B330 for deep-space habitation will support operations/missions in LEO, DRO, and beyond cis-lunar space

 Orbital ATK: Habitat that employs a modular, building block approach that leverages the Cygnus spacecraft to expand cis-lunar and long duration deep space transit habitation capabilities and technologies.

Boeing: Developing a simple, low cost Exploration
 Augmentation Module (EAM) that is affordable early on,
 that allows various technologies to be tested over time,
 and that is capable of evolving into a long-duration crew
 support system for cis-lunar and Mars exploration.

System Maturation Teams - Integrated capability investment decisions with traceability to human exploration needs

System Maturation Team			
Autonomous Mission Operations (AMO)			
Communication and Navigation (Comm/Nav)			
Crew Health & Protection and Radiation (CHP)			
Environmental Control and Life Support Systems and Environmental Monitoring (ECLSS-EM)			
Entry, Descent and Landing (EDL)			
Extra-vehicle Activity (EVA)			
Fire Safety			
Human-Robotic Mission Operations			
In-Situ Resource Utilization (ISRU)			
Power and Energy Storage			
Propulsion			
Thermal (including cryo)			
Discipline Team - Crosscutting			
Avionics			
Structures, Mechanisms, Materials and Processes (SMMP)			

- The SMTs comprise subject matter experts from across the agency who have been involved in maturing systems and advancing technology readiness for NASA. They are:
 - Defining performance parameters and goals for each of the 14 capabilities
 - Developing maturation plans and roadmaps for the identified performance gaps
 - Specifying the interfaces between the various capabilities
 - Ensuring that the capabilities mature and integrate to enable future pioneering missions.
- The subject matter experts that compose each SMT are responsible for understanding their capabilities across all missions and elements within the Evolvable Mars Campaign.
- The SMTs work closely with the Evolvable Mars Campaign to coordinate capability needs & gaps.
- STMD's Principal Technologists are members of the SMTs and coordinate the STMD investment planning with identified capability needs and gaps.

System Maturation Team Data Hierarchy

- System Maturation Teams (e.g. Propulsion) divided into Capability Areas
 - Capability Areas (e.g. High Thrust Propulsion) divided into Gaps
 - Gap (e.g. Pump-Fed LOX/CH4 In-Space Engine) defines a capability advancement over the current state of the art along with mission criticality and mission need date; gap is closed by performing multiple Gap Closing Tasks
 - Gap Closing Tasks (e.g. Power Pack Development) defines task duration and phasing, cost and funding status, and development testing locations (ISS or cis-lunar)

TRANSPORTATION OF CREWAND CARGO TO/FROM DEEP SPACE

IN-SPACE TRANSPORTATIO

Mars EDL

Challenges

Transport crew and cargo to/from Mars vicinity

Provide transportation within the Mars system

Provide access to Mars surface

Uncrewed operations during deployment and between uses

Deliver crew and cargo to Mars surface

- ✓ Possible aerocapture at 6.3 km/s if not propulsively delivered to orbit
- ✓ Entry velocity of 3.8 4.7 km/s
- √ 100 m precision landing with hazard avoidance
- ✓ Supersonic retropropulsion with LOX/CH₄ engine

Mars Ascent

- ✓ Deployable/Inflatable (16-23 m) entry systems
- ✓ Surface access at +2 km MOLA
- √20-30 t payload to the surface, 40-60 t arrival at Mars

Common Capabilities Chemical Propulsion

Common LOX/CH₄ Pump-Fed Engine:

- lsp: 355-360 s
- Up to 15 year lifetime
- 150-500 s burn time
- 5:1 throttling
- ✓ Near-ZBO storage with 90 K cryocooler

LOX/CH, Pressure-Fed RCS:

✓ Thrust: 100-1000 lbf; lsp: 320 s

Return crew and cargo from Mars surface

- √ 4 crew and 250 kg payload from ±30 deg latitude, 0 km MOLA to Mars parking orbit
- ✓ 26 t prop (20 t O₂, 6 t CH₄), 35 t total liftoff mass. 8 t Earth launch dry mass
- ✓ Up to 3 days flight duration
- √ 5 years dormant before use
- ✓ Use of ISRU-produced oxygen

✓ Thrust: 25 klbf.

Mars Taxi

Transport crew and cargo within the Mars system

- ✓ 4 crew for up to 2.5 days
- √ 7 t inert mass. 14 t wet mass.
- √ 8 kW EOL at Mars solar power
- ✓ Reusable and refuelable

Electric Propulsion

Deliver approx. 40-60 t to Mars orbit

200-kW class solar array system (BOL at 1 AU) using 30% efficient GaAs, triple junction solar cells

300 V array system converted to 800 V for EP and 28 V for spacecraft

ARRM-Derived Hall Thruster:

- ✓ Common Xe storage and feed system with 13.3 kW thruster
- ✓ Isp: 2000 s or 3000 s modes

SEP - Chemical

SEP delivers cargo to Mars vicinity, and LOX/CH. propulsion delivers crew to/from Mars vicinity

- √ 1 x 200-kW class solar array
- √ >8 kW thermal rejection
- ✓ Flight times to Mars approx. 1,400 days
- √ 4-6 years dormant before use

SEP - Hybrid

Combined SEP and hypergolic propulsion system delivers crew and cargo to Mars vicinity

- √ 2 x 200-kW class arrays √ 1,100 days total trip mission time, 300 days at
 - √ >16 kW thermal rejection
 - Ability to refuel 24 t of Xe on orbit
 - √ 15 year lifetime, 3 uses. 3

refuelinas

LIVING IN SPACE: LONG DURATION HABITATION

Challenges

Protect and support crew in deep space for up to 1100 days

Uncrewed operations during deployment and between uses

Reduced logistics and spares

Earth - independent operations

Phobos Habitat

Live and operate in microgravity at Phobos

- ✓ 4 crew for up to approx. 500 days
- √ 48 m³ volume for logistics and spares
- ✓ Logistics Mass: 10.7 t
- ✓ EVA system with Phobos mobility and dust mitigation
- √ 4-5 years dormant before use
- 3 years dormant between uses

Common Capabilities

4 Crew for 500-1100 days Common pressure vessel

15 year lifetime with long dormancy periods Design for reusability across multiple missions 100 m³ habitable volume and dry mass < 22 t

Autonomous vehicle health monitoring and repair Advanced Exploration ECLSS with >85% H₂O recovery and >75% O₂ recovery from reduced CO₂

ECLSS System (w/o spares): <5 t mass, <9 m² volume, <4 kW power

Environmental monitoring with >80% detection rate without sample return

14-kW peak operational power and thermal management required Autonomous mission operations with up to 24 minute one-way time delay

Autonomous medical care, behavioral health countermeasures. and other physiological countermeasures to counteract long duration missions without crew abort

> Exercise equipment under 500 kg Provide 20-40 g/cm² of radiation protection EVA pressure garment and PLSS <200 kg

Contingency EVA operations with 1 x 2-person EVA per month

Communications to/from Earth and between elements

Mars Surface Habitat

- ✓ 4 crew for up to approx. 500 days
- √ 48 m³ volume for logistics and spares
- Logistics Mass: 10.7 t
 - ✓ 4 years dormant before use
 - 3-4 years dormant between uses
 - EVA system with surface mobility, dust mitigation, and atmospheric compatibility

Transit Habitat

Live and operate in microgravity during trip to/from Mars

- ✓ 4 crew for up to 1,100 days
- √ 93 m³ volume for logistics and spares
- Logistics Mass: 21 t
 - ✓ 4 years dormant before use and between uses

LIVING IN SPACE: SHORT DURATION HABITATION

Excursion Vehicle

Challenges

Protect and support crew in deep space for up to 60 days Uncrewed operations during deployment and between uses

Earth - independent operations

Explore kilometers away from the destination habitat

- ✓ 2 crew for up to 2 weeks, contingency 4 crew for 1 week
- ✓ EVA pressure garment and PLSS <200 kg with dual-band radio
 </p> avionics and radiation hardened bio-med sensors
- ✓ High frequency EVA (15 min. ingress-egress time)
- ✓ 4 years dormant before first use and between uses
- ✓ Design for reuse for 3 missions
- ✓ Lightweight exercise equipment under 25 kg

Common Capabilities

4 crew for short durations (up to 60 days) Support autonomous mission operations with time delay Common, partially closed ECLSS under approx. 800 kg (3 years MTBF and 2 crew per torr of CO₂ removal) Autonomous rendezvous, prox ops, and docking Ability to be teleoperated with <0.5 s latency

Communications to/from Earth and between elements Common, lightweight pressure vessel and common hatch 15 year lifetime with long dormancy periods Design for maintainability

Mars Ascent Vehicle

Logistics module to cis-lunar space

✓ Launched on either SLS and ELV launch vehicles

Logistics Module

- ✓ Carries up to 5-10 t of pressurized logistics
- √ 10-15 t total mass

Return crew to Mars orbit

- ✓ 4 crew for up to 3 days flight duration
- ✓ Open loop ECLSS under approx. 400 kg
- √ 5 years dormant before use

Initial Cis - Lunar **Habitation**

Support crew each year for short duration stays in cislunar space

- 4 crew for up to 60 days
- EVA pressure garment and PLSS <200 kg with dualband radio avionics and rad-hardened bio-med sensors ✓ High frequency EVA (15 min. ingress-egress time)
 - ✓ Lightweight exercise equipment under 25 kg
 - √ 1 year dormant before use
 - ✓ Up to 300 days dormant between uses

Mars Taxi

Transport crew between Mars orbit and Mars Moons

- 4 crew for up to 2.5 day crewed duration
 - 560 days operational (uncrewed) at Mars
 - ✓ 2 years dormant before use
 - Up to 1.5 years dormant between uses

DESTINATION SYSTEMS

Phobos / Deimos

- ✓ Mobility power generation of 1-3 kW BOL and 120 kW-hr eclipse storage
- Mobility systems for crew (2 nominal, 4 contingency) and cargo (up to 3 t) with approx. 40 km range
- ✓ RCS mobility sled for excursion vehicle
- ✓ Dormant for 6 years at Phobos/Deimos before use
- ✓ Dormant for 3 years between uses
- ✓ All elements have 15 year lifetime
- ✓ Low-q body docking and interaction

Cis - Lunar/Asteroid

- ✓ Acquisition and processing of 0.08 1.6 kg/day of water, oxygen, and/or hydrocarbons at 10 – 20 % efficiency
- ✓ Low-g body grappling/capture and manipulation
- ✓ Hub for exploration vehicle aggregation and servicing

Challenges

Uncrewed operations during deployment and between uses

Extracting and processing local resources

Operations in harsh environments

Common Capabilities

Ability to prospect for usable resources (e.g. water, oxygen, carbon, nitrogen) to achieve Earth-independence Ability to be teleoperated from other destination elements Support autonomous mission operations with time delay Communications to/from Earth and between elements Robotic support for setup, operations, and maintenance Sample acquisition

Dust mitigation

Mars Surface

- √ 40 kW stationary Mars surface power
- √ 1-5 kW deployable/mobile Mars power
- ✓ Mars surface rover for crew (2 nominal, 4 contingency) and cargo (up to 3 t) with a range of 90 km per charge and max speed of 10 km/hr
 - Mars surface ISRU plant capable of processing >2.2 kg/hr of atmosphere CO₂ into O₂ with a process efficiency of 36%, power of 20-22 kWe, and is less than 1 t
 - ✓ Liquification and cryogenic fluid storage in Mars atmosphere
 - ✓ All systems dormant for 4-5 years before first use and between uses
 - ✓ All elements have 15 year lifetime
 - ✓ Offloading and transport systems capable of up to 10 t

 Robotic rover with acquisition and processing of icy regolith

HEOMD/STMD Engagement on Technology Needs

- Evolvable Mars Campaign (EMC) has a strategic set of needs for enabling long-range capabilities; Orion and SLS needs are primarily near-term and mission focused.
- Crosscutting needs identified by HEOMD:
 - Radiation monitoring & protection (ISS, Orion, HRP, EMC)
 - EVA suit & PLSS (Orion, ISS, ARM, EMC)
 - Environmental monitoring (Orion, ISS, EMC)
 - Spacecraft fire safety (Orion, ISS, EMC)
 - Exercise equipment (Orion, HRP, EMC)
 - Advanced solar arrays (ARM, ISS, EMC)
 - Automated rendezvous & docking (Orion, ARM, EMC)
- Areas with greatest number of gaps:
 - Human Health, Life Support, & Habitation Systems (Orion, HRP)
 - Communications & Navigation (SCAN)
- Categories of collaboration:
 - **Deliveries:** STMD matures technology and delivers to AES for system-level evaluation (e.g advanced space suit components.)
 - Partnerships: STMD and HEOMD/AES co-fund the development of technologies that are of mutual interest (e.g. Mars 2020 payloads.)
 - **Coordination:** STMD and HEOMD/AES define specific divisions of responsibility within a technical discipline (e.g. synthetic biology, advanced manufacturing, etc.)

Capability Development Risk Reduction

RELIANT

	Mission Capability	ISS	Cis-lunar Short Stay (e.g. ARM)	Cis-lunar Long Stay	Cis-Mars Robotic	Mars Orbit	Mars Surface
Working in Space and On Mars	In Situ Resource Utilization & Surface Power		Exploratory ISRU Regolith	Exploratory ISRU	Exploratory ISRU & Atmosphere	Exploratory ISRU	Operational ISRU & High Power
	Habitation & Mobility	Long Duration with Resupply	Initial Short Duration	Initial Long Duration		Resource Site Survey	Long Duration / Range
	Human/Robotic & Autonomous Ops	System Testing	Crew-tended	Earth Supervised	Earth Monitored	Autonomous Rendezvous & Dock	Earth Monitored
W	Exploration EVA	System Testing	Limited Duration	Full Duration	Full Duration	Full Duration	Frequent EVA
	Crew Health	Long Duration	Short Duration	Long Duration	Dust Toxicity	Long Duration	Long Duration
Staying Healthy	Environmental Control & Life Support	Long Duration	Short Duration	Long Duration		Long Duration	Long Duration
	Radiation Safety	Increased Understanding	Forecasting	Forecasting Shelter	Forecasting Shelter	Forecasting Shelter	Forecasting & Surface Enhanced
Transportation	Ascent from Planetary Surfaces				Sub-Scale MAV	Sub-Scale MAV	Human Scale MAV
	Entry, Descent & Landing		S		Sub-Scale/Aero Capture	Sub-Scale/Aero Capture	Human Scale EDL
	In-space Power & Prop		Low power	Low Power	Medium Power	Medium Power	High Power
	Beyond LEO: SLS & Orion		Initial Capability	Initial Capability	Full Capability	Full Capability	Full Capability
	Commercial Cargo & Crew	Cargo/Crew	Opportunity	Opportunity	Opportunity	Opportunity	Opportunity
	Communication & Navigation	RF	RF & Initial Optical	Optical	Deep Space Optical	Deep Space Optical	Deep Space Optical
		EARTH		ROVING GROUND		EARTH INI	DEPENDENT 27

PROVING GROUND

Mars Exploration Capability Summary Assessment

Capabilities	Assessment		
In Situ Resource Utilization & Surface Power	Resource Prospector and MOXIE are small-scale demonstrations of ISRU on planetary bodies. These would need to be significantly scaled up to support human exploration needs.		
Habitation & Mobility	ISS is demonstrating long-duration habitation in LEO, but duration depends on resupply. Conceptual studies are underway for short duration cis-lunar habitats.		
Human/Robotic & Autonomous Ops	Human/Robotic & Autonomous Ops are being demonstrated on ISS. Substantial additional work is needed to enable maintenance of human exploration systems.		
Exploration EVA	Uncertain if next generation spacesuit will be ready before 2024 for demonstration on ISS.		
Crew Health	Human Research Program is investigating crew health risks on ISS, and developing medical diagnostics and countermeasures. Some health risks may not be controlled by 2024.		
Environmental Control & Life Support	ISS life support systems require frequent maintenance. New ECLSS technologies are being demonstrated on ISS. Long-duration, closed-loop, system-level ECLSS demonstration is being planned.		
Radiation Safety	Characterizing LEO, cis-lunar, and Mars surface radiation environments. Improving forecast models for solar particle events. Reducing uncertainty in radiation effects on humans. Effective shielding has not been developed.		
Ascent from Planetary Surfaces	Little work is being done in this area except for MAV concept studies and small LOX-methane propulsion efforts.		
Entry, Descent & Landing	There are multiple EDL technology development activities for Mars robotic missions but analogous projects for human missions are in early stages of progress.		
In-space Power & Propulsion	Developing 40 kW SEP system for ARM. Initiating ground testing of 100 kW electric thrusters. Developing small fission reactors for surface power (low funding level).		
Beyond LEO: SLS & Orion	Proceeding toward first flight of SLS and Orion in 2018.		
Commercial Cargo & Crew	Proceeding toward Commercial Crew IOC in 2018. Opportunities for resupply of cis-lunar habitats.		
Communication & Navigation	Demonstrating high bandwidth optical communications for cis-lunar and Mars. Deep space optical comm is a candidate for demonstration on SMD missions.		

Summary

- The Journey to Mars requires a resilient architecture that can embrace new technologies, new international / commercial partners, and identify agency investment choices to be made in the near, mid and long term.
- The Evolvable Mars Campaign:
 - Informs the agency choices by providing technical information from a cross agency, end-to-end integrated analysis
 - Needs to continue to develop linkages to the agency decision making and capability investment processes
- Regardless of which path is ultimately selected, there is a set of common capabilities required to be developed by NASA and its partners over the next 10 years

